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LETTER TO THE EDITOR 

Simplified calculation of the relaxation of the temperature 
anisotropy in a plasma due to binary encounters 

M Eyni and A S Kaufman 
Racah Institute of Physics, The Hebrew University of Jerusalem, Israel 91000 

Received 31 March 1976, in final form 20 January 1977 

Abstract. A test particle is selected to characterize the average behaviour of an assembly of 
particles of the same kind in a plasma. The re-distribution of energy of this particle after 
binary interaction between it and the other members of the assembly is calculated. 

A comparison is made between the simple physical solution offered here and that of 
Kogan. The present result can be easily applied to plasma problems, for example, the solar 
wind. 

The relaxation of the temperature anisotropy in a plasma has been investigated 
theoretically in recent years and applied practically in research on controlled fusion. 
Relaxation takes place by processes which are regarded as separable, namely, binary 
encounters between charged particles and collective effects. Kogan (1961) was the first 
to solve the problem for the equalization of temperature components of particles of the 
same kind as brought about by binary encounters amongst themselves. An extension of 
this work was provided by Lehner (1967). Here, the object was to treat the same 
problem as that of Kogan but in a simplified physical manner. 

Let the thermal velocity distribution of the assembly of particles be isotropic in a 
plane orthogonally transverse to the z direction. This direction is taken as the direction 
of the magnetic field should it exist. Select one particle from the assembly with velocity 
U and regard it as a test particle. Impose the restriction that the velocity components U, 
and U, of this particle in the respective transverse direction and z direction be equal to 
the RMS values of speed, U', and Gz. If 8 is defined as the angle between the z direction 
and the direction of the velocity U, 

U': 2 
sin28 = = - 

u , + u ,  K + 2  

and (1) 

c2 K 
cos28=&=- 

U ,  +U, K +2' 

where K is the temperature-anisotropy factor, that is, the ratio of the kinetic tempera- 
tures in the respective z direction and transverse direction. All particles which satisfy 
the speed condition given above are characterized by the fact that their velocity vectors 
form the envelope of a double cone as illustrated in figure 1. The test particle thus 
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Figure 1. Velocity diagram of particles possessing the same velocity as the test particle, 
before interaction with the assembly of particles. 

described is to be regarded as representing the average behaviour of the assembly of 
particles. The problem is to calculate the re-distribution of energy of this particle after 
binary interaction between it and the other particles of the assembly. 

Let AvL be the change of speed per unit time in the direction perpendicular to the 
original motion of the test particle caused by the single interaction between it and the 
remainder of the assembly. The mean value of (AuJ2 over many such interactions is 

0.7 x 8 ~ n ( z e ) ~  In A 
m 2U" = 2 

where n is the number density of the particles, m and ze the respective mass and electric 
charge of a particle, A the ratio of the Debye-Huckel radius to the mean impact 
parameter and U' is the RMS speed. This result is based on equation (5.17) of Spitzer 
(1962) with the assumption that this equation is not seriously affected in the case where 
the velocity distribution is anisotropic. The average amount of energy E, transferred 
per unit time in the direction perpendicular to the initial direction is im((AuL)2>. 

If one assumes a sfutisticully isotropic distribution of the energy cl, then the velocity 
vector associated with this energy describes a circle in a plane which is perpendicular to 
the direction of the velocity o (see figure 2). Choose two directions in this plane, one in 
the plane of figure 2 and the other in the direction perpendicular to the plane of this 
figure, that is, the transverse direction. The energy in each direction is on the average 
E J ~ .  In the plane of figure 2, the energies in the z direction and transverse direction 
are respectively $eEl sin28 and cos2& Hence, on using equation ( l ) ,  the components 

I 

Figme 2. Velocity diagram of the test particle illustrating the re-distribution of velocities 
after interaction with the assembly of particles. OA is the direction of the initial motion of 
the test particle with velocity o before the interaction with the other particles. 
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of transferred energy are E J ( K  + 2 )  in the z direction and [eLK/2(K + 2) ]  + e1/2 in the 
transverse direction. The energy of the particle in the initial direction after the 
interaction is depleted by the amount cl. In the z direction this amounts to cos2@ 
which is equal to E,.K/(K + 2) ,  whilst in the transverse direction it is el sin28 which is 
equal to 2eL/(K + 2) .  

Denote by E ,  and E ,  the total respective changes in energy per unit time in the z 
direction and transverse direction. Hence, on collecting terms, 

and 

The result E, = - E ,  is as anticipated. Now on combining equations ( 3 )  and ( 4 )  with 
equation (2), 

0.7 x 4 ~ n ( z e ) ~  In A K - 1 
(3m~kT)”~ (K)’ E ,  = - E ,  = 

where Tis the mean kinetic temperature and k the Boltzmann constant. This is the final 
result. 

The result given by equation ( 5 )  can be compared with the results of either Kogan 
(1961) or Lehner (1967). The former regarded his results as accurate only to an order 
of magnitude. Their results can be reduced to the formulation given here by using the 
equations 

T , = [ 3 / ( K + 2 ) ] T  and T, =[3K/(K+2)]T.  

One obtains 

where the function 

tan-’ x ‘/2 

In{[1 + ( - x ) ’ / ~ ] / [ I  - ( - x ) ” ~ ] }  

1 / 2  when x > O  

when x < 0. I 2(-X)’l2 

44x1 = 

Over a wide range of values of K, for example, from zero to 100, including those typical 
of the solar wind, equations ( 5 )  and (6) compare favourably and differ by a factor of up 
to 2 .  

Equation ( 5 )  was used in calculating the effect of binary encounters on the thermal 
anisotropy of the protons in the solar wind (Eyni and Kaufman 1975). It may be 
inferred from the results of that paper (Eyni and Kaufman, p 11 1) that the collisional 
effect as represented by equation (5 )  stands between Kogan’s (1961) result on the one 
hand and that of Leer and Axford (1972) on the other. 
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